Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

$\operatorname{Bis}\left(\mu-2,2^{\prime}\right.$-biimidazole- $\left.\kappa^{2} N^{3}: N^{3}\right)$ bis[aquacopper(I)] sulfate

Xiutang Zhang, ${ }^{\mathrm{a}, \mathrm{b} *}$ Peihai Wei, ${ }^{\text {a }}$ Bo $\mathrm{Hu}^{\text {a }}{ }^{\text {a }}$ Bin Li^{a} and Congwen Shia

${ }^{\text {a Advanced Material Institute of Research, Department of Chemistry and Chemical }}$ Engineering, ShanDong Institute of Education, Jinan 250013, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
Correspondence e-mail: xiutangzhang@yahoo.com.cn

Received 29 October 2009; accepted 6 November 2009

Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.025 ; w R$ factor $=0.073$; data-to-parameter ratio $=11.0$.

In the structure of the title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{SO}_{4}$, the asymmetric unit contains half each of two $2,2^{\prime}$-diimidazole ligands, one Cu^{+}cation, one water molecule and half of a sulfate anion (2 symmetry). The dinuclear complex is completed through a twofold rotation axis, leading to a twisted ten-membered ring molecule. The dihedral angle between the two symmetry-related $2,2^{\prime}$-diimidazole ligands is $23.6(1)^{\circ}$. The copper centre is coordinated by two N atoms of two symmetry-related $2,2^{\prime}$-diimidazole ligands in an almost linear fashion. The water molecule exhibits a weak coordination to Cu^{+}with a more remote distance of 2.591 (2) \AA. The distance between the two copper centres is 2.5956 (6) \AA. O$\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the complex cation, the water molecule and the sulfate anion lead to the formation of a three-dimensional network.

Related literature

For background to metal organic framework structures, see: Lee et al. (2000).

Experimental

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{SO}_{4}$
$M_{r}=527.50$
Monoclinic, C2/c
$a=12.7597$ (7) A

$$
\begin{aligned}
& b=14.8594(7) \AA \\
& c=10.6375(5) \AA \\
& \beta=114.777(3)^{\circ} \\
& V=1831.22(16) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker APEXII CCD

> diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.754, T_{\text {max }}=0.826$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.073$
$S=1.00$
1630 reflections
148 parameters

> Mo $K \alpha$ radiation
> $\mu=2.49 \mathrm{~mm}^{-1}$
> $T=273 \mathrm{~K}$
> $0.12 \times 0.10 \times 0.08 \mathrm{~mm}$

9619 measured reflections 1630 independent reflections
1522 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 4$	$1.8953(18)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$1.9006(18)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 2$	$173.20(8)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 2^{\mathrm{i}}$	0.819 (6)	2.037 (8)	2.848 (3)	170 (5)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 1^{\text {ii }}$	0.82 (3)	2.294 (14)	3.072 (4)	159 (4)
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {iii }}$	0.970 (14)	1.794 (13)	2.697 (3)	153 (3)
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{iv}}$	0.972 (15)	1.804 (9)	2.743 (3)	162 (3)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (iii) $-x+1, y,-z+\frac{3}{2}$; (iv) $x-1, y-1, z$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Financial support from the 973 Key Program of the MOST (2006CB932904, 2007CB815304), the National Natural Science Foundation of China (20873150, 20821061 and 50772113), the Chinese Academy of Sciences (KJCX2-YWM05) and ShanDong Institute of Education is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2276).

References

Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Lee, E., Heo, J. \& Kim, K. (2000). Angew. Chem. Int. Ed. 112, 2811-2813. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, m1563 [doi:10.1107/S1600536809046996]
$\operatorname{Bis}\left(\mu_{-2,2}{ }^{\prime}\right.$-biimidazole- $\left.\kappa^{2} N^{3}: N^{3}\right)$ bis[aquacopper(I)] sulfate

X. Zhang, P. Wei, B. Hu, B. Li and C. Shi

Comment

The design and synthesis of metal-organic frameworks (MOFs) has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Lee et al. 2000). Here, we report the structure of the title compound.

As shown in Figure 1, the Cu^{+}cation is coordianted by two N atoms from two 2,2'-diimidazole molecules, showing an almost linear coordination to $\mathrm{Cu}(\mathrm{I})$, the $\mathrm{Cu}-\mathrm{N}$ bond lengths being 1.8953 (18) and 1.9006 (18) \AA, respectively. The separation between the two Cu^{+}cores is 2.5956 (6) \AA. Moreover, the water molecule exhibits a weak coordination to $\mathrm{Cu}(\mathrm{I})$ with a more remote distance of 2.591 (2) \AA. Each two $\mathrm{Cu}(\mathrm{I})$ ions and two 2,2'-diimidazole molecules form one ten-membered ring molecle via a twofold axis as symmetry element. The dihedral angle between two symmetry-related 2,2'-diimidazole molecules is $23.6(1)^{\circ}$. In the voids of the packing, there is an intricate hydrogen bonding of the type $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, as shown in Figure 2 and Table 2.

Experimental

A mixture of $2,2^{\prime}$-diimidazole ($1 \mathrm{mmol}, 0.14 \mathrm{~g}$), oxalic acid ($1 \mathrm{mmol}, 0.09 \mathrm{~g}$), copper(II) sulfate pentahydrate (1 mmol , 0.25 g), and $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ was heated to 443 K for one day in an autoclave. Red crystals were obtained after cooling to room temperature with a yield of 82%. Elemental Analysis. Calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{~S}$: C 27.30 , H 3.03 , $\mathrm{N} 21.23 \%$; Found: C $27.15, \mathrm{H} 2.95, \mathrm{~N} 21.11 \%$. Under the given hydrothermal conditions, $\mathrm{Cu}(\mathrm{II})$ was apparently reduced to $\mathrm{Cu}(\mathrm{I})$, leading to the formation of the title complex.

Refinement

All hydrogen atoms bound to carbon were refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C})$. The H atoms of the water molecule were located from difference density maps and were refined with distance restraints of $\mathrm{d}(\mathrm{H}-\mathrm{H})=1.38(2) \AA, \mathrm{d}(\mathrm{O}-\mathrm{H})=0.88(2) \AA$, and with a fixed $U_{\text {iso }}$ of $0.80 \AA^{2}$. The H atoms on nitrogen atoms were located from difference density maps and were refined with distance restraints of $\mathrm{d}(\mathrm{N}-\mathrm{H})=0.97$ (2) \AA.

Figures

Fig. 1. A view of the title compound with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: \#I $-x, y,-z+3 / 2$]

supplementary materials

Fig. 2. A view of the packing diagram of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

$\operatorname{Bis}\left(\mu-2,2^{\prime}-\right.$ biimidazole $\left.-\kappa^{2} N^{3}: N^{3}\right)$ bis[aquacopper(I)] sulfate

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}_{1}\right)_{2}\right] \mathrm{SO}_{4}$
$M_{r}=527.50$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=12.7597$ (7) \AA
$b=14.8594$ (7) \AA
$c=10.6375(5) \AA$
$\beta=114.777(3)^{\circ}$
$V=1831.22(16) \AA^{3}$
$Z=4$
$F_{000}=1064$
$D_{\mathrm{x}}=1.913 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5587 reflections
$\theta=0.00-0.00^{\circ}$
$\mu=2.49 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
Block, red
$0.12 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=273 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.754, T_{\text {max }}=0.826$
9619 measured reflections

1630 independent reflections
1522 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=2.2^{\circ}$
$h=-15 \rightarrow 15$
$k=-17 \rightarrow 17$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.073$
$S=1.00$
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.047 P)^{2}+2.1669 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.008$
1630 reflections
$\Delta \rho_{\max }=0.30 \mathrm{e}^{-3}$

148 parameters
$\Delta \rho_{\text {min }}=-0.45$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cu1	$0.01189(3)$	$0.265145(18)$	$0.63467(3)$	$0.04181(14)$
S1	1.0000	$0.76744(5)$	0.7500	$0.0392(2)$
C1	$0.03743(17)$	$0.45644(13)$	$0.7144(2)$	$0.0299(4)$
C2	$0.14997(19)$	$0.50798(15)$	$0.6214(2)$	$0.0379(5)$
H2	0.1923	0.5464	0.5913	0.045^{*}
C3	$0.1405(2)$	$0.41751(15)$	$0.6049(2)$	$0.0400(5)$
H3	0.1766	0.3829	0.5616	0.048^{*}
C4	$-0.1342(2)$	$0.12062(16)$	$0.4636(2)$	$0.0411(5)$
H4	-0.1675	0.1563	0.3848	0.049^{*}
C5	$-0.1485(2)$	$0.03051(16)$	$0.4682(2)$	$0.0410(5)$
H5	-0.1917	-0.0068	0.3944	0.049^{*}
C6	$-0.03621(17)$	$0.07952(13)$	$0.6765(2)$	$0.0302(4)$
N1	$-0.08656(15)$	$0.00532(12)$	$0.6033(2)$	$0.0352(4)$
N2	$-0.06269(16)$	$0.15125(12)$	$0.59369(19)$	$0.0356(4)$
N3	$0.08523(15)$	$0.53162(11)$	$0.69092(19)$	$0.0338(4)$
N4	$0.06894(16)$	$0.38469(12)$	$0.66225(19)$	$0.0350(4)$
O1	$0.9542(2)$	$0.71052(14)$	$0.8273(3)$	$0.0695(6)$
O2	$0.90665(16)$	$0.82506(12)$	$0.6552(2)$	$0.0561(5)$
O1W	$0.1960(2)$	$0.18900(17)$	$0.6389(3)$	$0.0708(6)$
H1W	$0.169(3)$	$0.191(4)$	$0.5542(3)$	$0.13(2)^{*}$
H2W	$0.2621(13)$	$0.208(3)$	$0.678(3)$	$0.082(12)^{*}$
H3A	$0.069(2)$	$0.5926(7)$	$0.710(3)$	$0.061(8)^{*}$
H1A	$-0.079(2)$	$-0.0551(7)$	$0.641(3)$	$0.060(8)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0621(2)$	$0.01984(19)$	$0.0446(2)$	$-0.00492(11)$	$0.02347(16)$	$-0.00188(10)$
S1	$0.0481(5)$	$0.0179(4)$	$0.0512(5)$	0.000	$0.0202(4)$	0.000

C1	$0.0328(10)$	$0.0188(9)$	$0.0321(10)$	$0.0000(8)$	$0.0075(8)$	$0.0009(8)$
C2	$0.0378(11)$	$0.0326(11)$	$0.0440(12)$	$-0.0024(9)$	$0.0179(10)$	$0.0032(9)$
C3	$0.0457(12)$	$0.0332(12)$	$0.0448(13)$	$0.0033(10)$	$0.0227(10)$	$0.0008(10)$
C4	$0.0462(12)$	$0.0379(12)$	$0.0345(11)$	$-0.0033(10)$	$0.0122(10)$	$0.0019(10)$
C5	$0.0424(12)$	$0.0387(13)$	$0.0383(12)$	$-0.0091(10)$	$0.0133(10)$	$-0.0073(10)$
C6	$0.0317(10)$	$0.0214(10)$	$0.0384(11)$	$-0.0013(8)$	$0.0157(8)$	$-0.0008(8)$
N1	$0.0373(9)$	$0.0235(9)$	$0.0432(10)$	$-0.0028(7)$	$0.0153(8)$	$-0.0024(8)$
N2	$0.0438(10)$	$0.0245(9)$	$0.0368(10)$	$-0.0024(7)$	$0.0154(8)$	$0.0006(7)$
N3	$0.0350(9)$	$0.0208(9)$	$0.0417(10)$	$-0.0009(7)$	$0.0124(8)$	$0.0009(7)$
N4	$0.0436(10)$	$0.0221(9)$	$0.0391(10)$	$0.0003(7)$	$0.0173(8)$	$-0.0002(7)$
O1	$0.1064(17)$	$0.0292(9)$	$0.0917(16)$	$-0.0109(11)$	$0.0600(14)$	$0.0037(10)$
O2	$0.0531(10)$	$0.0340(9)$	$0.0671(12)$	$0.0030(8)$	$0.0113(9)$	$0.0031(8)$
O1W	$0.0653(14)$	$0.0608(14)$	$0.0795(17)$	$-0.0082(11)$	$0.0236(12)$	$-0.0130(12)$

Geometric parameters ($\AA,{ }^{\circ}$)

Cu1-N4	1.8953 (18)
Cu1-N2	1.9006 (18)
$\mathrm{Cu}-\mathrm{Cu} 1^{\text {i }}$	2.5956 (6)
S1-O1	1.462 (2)
$\mathrm{S} 1-\mathrm{Ol}{ }^{\text {ii }}$	1.462 (2)
$\mathrm{S} 1-\mathrm{O} 2{ }^{\text {ii }}$	1.4704 (18)
S1-O2	1.4704 (18)
C1-N4	1.339 (3)
C1-N3	1.345 (3)
$\mathrm{C} 1-\mathrm{C} 1^{\text {i }}$	1.447 (4)
C2-C3	1.355 (3)
C2-N3	1.366 (3)
C2-H2	0.9300
C3-N4	1.383 (3)
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 2$	173.20 (8)
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{Cu1}{ }^{\text {i }}$	92.47 (6)
N2-Cu1-Cu1 ${ }^{\text {i }}$	88.35 (6)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 1^{\text {ii }}$	109.29 (18)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2{ }^{\text {ii }}$	110.56 (13)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{S} 1-\mathrm{O} 2^{\text {ii }}$	108.83 (13)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	108.83 (13)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{S} 1-\mathrm{O} 2$	110.56 (13)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{S} 1-\mathrm{O} 2$	108.77 (15)
N4-C1-N3	110.28 (19)
N4-C1-C1 ${ }^{\text {i }}$	126.55 (12)
N3-C1-C1 ${ }^{\text {i }}$	123.17 (12)
C3-C2-N3	106.5 (2)
C3-C2-H2	126.7
N3-C2-H2	126.7
C2-C3-N4	109.4 (2)

C3-H3	0.9300
C4-C5	1.355 (3)
$\mathrm{C} 4-\mathrm{N} 2$	1.377 (3)
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
C5-N1	1.370 (3)
C5-H5	0.9300
C6-N2	1.333 (3)
C6-N1	1.347 (3)
C6-C6 ${ }^{\text {i }}$	1.446 (4)
N1-H1A	0.972 (15)
N3-H3A	0.970 (14)
O1W-H1W	0.819 (6)
O1W-H2W	0.82 (3)
N2-C4-H4	125.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	106.3 (2)
C4-C5-H5	126.9
N1-C5-H5	126.8
N2-C6-N1	110.22 (19)
N2-C6- $\mathrm{C}^{\text {i }}$	125.81 (12)
N1-C6-C6 ${ }^{\text {i }}$	123.98 (13)
C6-N1-C5	107.94 (18)
C6-N1-H1A	125.3 (18)
C5-N1-H1A	126.8 (18)
C6-N2-C4	106.10 (18)
C6-N2-Cu1	126.64 (15)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{Cu} 1$	125.59 (15)
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{C} 2$	108.11 (18)
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	125.6 (17)
C2-N3-H3A	125.9 (17)

sup-4

supplementary materials

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	125.3	$\mathrm{C} 1-\mathrm{N} 4-\mathrm{C} 3$	$105.68(18)$
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{H} 3$	125.3	$\mathrm{C} 1-\mathrm{N} 4-\mathrm{Cu} 1$	$130.40(15)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 2$	$109.4(2)$	$\mathrm{C} 3-\mathrm{N} 4-\mathrm{Cu} 1$	$122.96(15)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	125.3	$\mathrm{H} 1 \mathrm{~W}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$	$115(4)$

Symmetry codes: (i) $-x, y,-z+3 / 2$; (ii) $-x+2, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,^{\circ}$)

$D — \mathrm{H} \cdots A$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
O1W—H1W \cdots O2 $2^{\text {iii }}$	0.819 (6)	2.037 (8)	2.848 (3)	170 (5)
O1W-H2W $\cdots \mathrm{O}^{\text {iv }}$	0.82 (3)	2.294 (14)	3.072 (4)	159 (4)
N3-H3A $\cdots \mathrm{O}^{\text {v }}$	0.970 (14)	1.794 (13)	2.697 (3)	153 (3)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\text {vi }}$	0.972 (15)	1.804 (9)	2.743 (3)	162 (3)

Symmetry codes: (iii) $-x+1,-y+1,-z+1$; (iv) $x-1 / 2, y-1 / 2, z$; (v) $-x+1, y,-z+3 / 2$; (vi) $x-1, y-1, z$.

supplementary materials

Fig. 1

Fig. 2

